Simple groups. Jordan-Hölder theorem

Sasha Patotski

Cornell University

ap744@cornell.edu

January 13, 2016

Symmetries of things give groups:

- triangle $\rightsquigarrow S_3$;
- **2** square $\rightarrow D_4$;
- $\textbf{3 cube} \rightsquigarrow S_4 \times \mathbb{Z}/2$

- symmetries \rightsquigarrow groups of transformations;
- \bullet groups of transformations \rightsquigarrow abstract groups;

- symmetries \rightsquigarrow groups of transformations;
- \bullet groups of transformations \rightsquigarrow abstract groups;
- abstract groups are related by homomorphisms;

- symmetries \rightsquigarrow groups of transformations;
- groups of transformations → abstract groups;
- abstract groups are related by homomorphisms;
- homomorphism φ gives new groups: ker φ and Im φ .

- Abstract groups can act on things. A group G acts on a set X via a homomorphism G → Bij(X).
- Action of a group symmetries of the set.

- Abstract groups can act on things. A group G acts on a set X via a homomorphism G → Bij(X).
- Action of a group symmetries of the set.
- Main point: any abstract group is a group of symmetries of something, and vice versa.

There is no mattress flip, repeating which we can obtain all possible positions of a mattress.

Unsolvability of the "fifteen puzzle" with 14 and 15 flipped uses group theoretic invariants.

- n! is divisible by m!(n-m)! for $0 \le m \le n$;
- (*ab*)! is divisible by $a!(b!)^a$;
- the number of integers mod *n* which are invertible mod *n* is an even number.

We can count number of necklaces (and many other things) using Polya Enumeration theorem.

Used labeling by elements of $\mathbb{Z}/2 \times \mathbb{Z}/2$ and symmetries of the "cross" to study possible game winning positions.

Bell ringing has a lot to do with subgroups of permutation groups, and paths Cayley graphs.

Groups zoo

• What kind of groups can there possible exist?

э

Groups zoo

- What kind of groups can there possible exist?
- How does a "groups zoo" look like?

The group of symmetries of a Sudoku game is

 $(\mathbb{Z}/2 \ltimes (S_3 \ltimes S_3^3)^2) \times S_9$

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

The order of the groups above is $2 \cdot 6^8 \cdot 9! = 1,218,998,108,160$.

Can we classify all groups?

Sasha Patotski (Cornell University) Simple groups. Jordan-Hölder theorem

< 67 ▶

3

• Answer: NO WAY!

3

- Answer: NO WAY!
- Question: can we classify finite groups?

- Answer: NO WAY!
- Question: can we classify finite groups?
- Answer: SORT OF! (EXTREMELY HARD!)

- Answer: NO WAY!
- Question: can we classify finite groups?
- Answer: SORT OF! (EXTREMELY HARD!)
- **Question:** can we start with an easier problem, say classifying finite abelian groups?

- Answer: NO WAY!
- Question: can we classify finite groups?
- Answer: SORT OF! (EXTREMELY HARD!)
- **Question:** can we start with an easier problem, say classifying finite abelian groups?
- Answer: SURE! (FINITE) ABELIAN GROUPS ARE A PIECE OF CAKE!

Theorem

Any finite abelian group G is isomorphic to a product of cyclic groups with orders being powers of primes:

$$G \simeq \mathbb{Z}/p_1^{n_1} \times \mathbb{Z}/p_2^{n_2} \times \cdots \times \mathbb{Z}/p_r^{n_r}$$

Such a decomposition is unique if we require $n_i \ge 1$ and $p_1 \ge p_2 \ge \dots p_r$.

• Remark: $\mathbb{Z}/4 \neq \mathbb{Z}/2 \times \mathbb{Z}/2$.

(日) (周) (三) (三)

3

Feeling

- Remark: $\mathbb{Z}/4 \neq \mathbb{Z}/2 \times \mathbb{Z}/2$.
- Feeling: abelian groups are like sand.

• Question: what about general groups?

- Question: what about general groups?
- Answer: they are build from simple pieces, which we can actually classify!
- **Goal:** explain what these "simple pieces" are, and what "built" really means.

Definition

Let G be a group, and H be a subgroup. The subgroup H is called **normal** if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

Definition

Let G be a group, and H be a subgroup. The subgroup H is called **normal** if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

- If G is abelian, every subgroup is normal.
- The subgroup of rotations in the group *D*₄ of symmetries of a square is normal.
- The subgroup A_n of even permutations is normal in S_n .

Definition

Let G be a group, and H be a subgroup. The subgroup H is called **normal** if for any $g \in G$ we have $gHg^{-1} = H$ (equality of sets!).

- If G is abelian, every subgroup is normal.
- The subgroup of rotations in the group *D*₄ of symmetries of a square is normal.
- The subgroup A_n of even permutations is normal in S_n .
- Important example: for any homomorphism $\varphi \colon G \to H$, ker φ is a **normal** subgroup of G.

 The multiplication of cosets is given by aH * bH := abH (well-defined!).

- The multiplication of cosets is given by aH * bH := abH (well-defined!).
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots\}$. Then $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/n$.

- The multiplication of cosets is given by aH * bH := abH (well-defined!).
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots\}$. Then $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/n$.
- Point: all normal subgroups of a group G are kernels of all possible homomorphisms G → H.

- The multiplication of cosets is given by aH * bH := abH (well-defined!).
- Let $n\mathbb{Z} \subset \mathbb{Z}$ be the subgroup $\{\ldots, -n, 0, n, 2n, \ldots\}$. Then $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/n$.
- Point: all normal subgroups of a group G are kernels of all possible homomorphisms G → H.
- Key theorem:

Theorem (The First Isomorphism theorem)

For any homomorphism $\varphi \colon G \to H$, there is a natural isomorphism

 ${\it G}/\ker\varphi\simeq {\rm Im}\,\varphi$

< ロト < 同ト < ヨト < ヨト

Simple groups

Definition

A group G is called **simple** if it doesn't have non-trivial normal subgroups (i.e. except G and $\{e\}$).

• For a simple group G, any homomorphism $G \rightarrow H$ is either trivial, or injective.

Simple groups

Definition

A group G is called **simple** if it doesn't have non-trivial normal subgroups (i.e. except G and $\{e\}$).

- For a simple group G, any homomorphism $G \rightarrow H$ is either trivial, or injective.
- Feeling: a simple group is like a steel ball

• Simple groups will be our building blocks.

• A group \mathbb{Z}/n is simple if and only if *n* is a prime number.

- A group \mathbb{Z}/n is simple if and only if *n* is a prime number.
- We will see that there is a good analogy

simple groups \leftrightarrow prime numbers

- A group \mathbb{Z}/n is simple if and only if n is a prime number.
- We will see that there is a good analogy

simple groups \leftrightarrow prime numbers

 Symmetric groups S_n are never simple for n ≥ 3, since they contain normal subgroups A_n.

- A group \mathbb{Z}/n is simple if and only if n is a prime number.
- We will see that there is a good analogy

simple groups \leftrightarrow prime numbers

- Symmetric groups S_n are never simple for n ≥ 3, since they contain normal subgroups A_n.
- The groups A_n are, however, simple for $n \ge 5$ (not trivial to prove!)
- We will see many more examples later.

• Questions: what are the orders of simple groups? can any order appear? can there be several simple groups having the same order?

- **Questions:** what are the orders of simple groups? can any order appear? can there be several simple groups having the same order?
- If a group has prime order p, then it's isomorphic to \mathbb{Z}/p .

- **Questions:** what are the orders of simple groups? can any order appear? can there be several simple groups having the same order?
- If a group has prime order p, then it's isomorphic to \mathbb{Z}/p .
- There are no simple groups of order 56.

- **Questions:** what are the orders of simple groups? can any order appear? can there be several simple groups having the same order?
- If a group has prime order p, then it's isomorphic to \mathbb{Z}/p .
- There are no simple groups of order 56.
- There is **unique** simple group of order 168.

Fano plane and the simple group of order 168

• **Theorem.** There is unique (up to isomorphism) simple group of order 168, which is the group of symmetries of the Fano plane:

Fano plane and the simple group of order 168

• **Theorem.** There is unique (up to isomorphism) simple group of order 168, which is the group of symmetries of the Fano plane:

 We will see how this example fits into a more general family of examples.

• In fact, for any integer *n* there can be **at most two** groups of order *n*.

- In fact, for any integer *n* there can be **at most two** groups of order *n*.
- For almost all integers *n*, there is at most one group of order *n*.

- In fact, for any integer *n* there can be **at most two** groups of order *n*.
- For **almost all** integers *n*, there is at most **one** group of order *n*.
- There are two non-isomorphic simple groups of order 20160.
- There are two infinite families of groups, $O_{2n+1}(q)$ and $S_{2n}(q)$ (whatever they are), which have the same order for q odd and n > 2. And that's it!