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Symmetries of things give groups:
Q triangle ~~ Ss;
@ square ~» Dy;
© cube ~~ 5, X Z/2

C m
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@ symmetries ~~» groups of transformations;

@ groups of transformations ~~ abstract groups;
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@ symmetries ~~» groups of transformations;
@ groups of transformations ~~ abstract groups;

@ abstract groups are related by homomorphisms;
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symmetries ~» groups of transformations;
groups of transformations ~~ abstract groups;

abstract groups are related by homomorphisms;

homomorphism ¢ gives new groups: ker ¢ and Im .
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@ Abstract groups can act on things. A group G acts on a set X via a
homomorphism G — Bij(X).

@ Action of a group — symmetries of the set.
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@ Abstract groups can act on things. A group G acts on a set X via a
homomorphism G — Bij(X).

@ Action of a group — symmetries of the set.

@ Main point: any abstract group is a group of symmetries of
something, and vice versa.

Sasha Patotski (Cornell University) Simple groups. Jordan-Holder theorem January 13, 2016 4 /33

/



Applications

. RV

(P -
-

F

There is no mattress flip, repeating which we can obtain all possible
positions of a mattress.
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Applications

Unsolvability of the “fifteen puzzle” with 14 and 15 flipped uses group
theoretic invariants.
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Applications

e n! is divisible by m!(n — m)! for 0 < m < n;

o (ab)! is divisible by a!(b!)?;

@ the number of integers mod n which are invertible mod n is an even
number.
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Applications

We can count number of necklaces (and many other things) using Polya
Enumeration theorem.
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Applications

Used labeling by elements of Z/2 x Z/2 and symmetries of the “cross’ to
study possible game winning positions.
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Applications

Bell ringing has a lot to do with subgroups of permutation groups, and
paths Cayley graphs.
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Groups zoo

@ What kind of groups can there possible exist?
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Groups zoo

@ What kind of groups can there possible exist?
@ How does a “groups zoo" look like?
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Sudoku group

The group of symmetries of a Sudoku game is

(Z)2 x (S3 x §3)?) x Sq

5(3 7
6 1]19]|5
9|8 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4119 5
8 719

The order of the groups above is 2 - 62 - 91 = 1,218,998, 108, 160.
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Can we classify all groups?
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Can we classify all groups?

@ Answer: NO WAY!
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Can we classify all groups?

@ Answer: NO WAY!

@ Question: can we classify finite groups?
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Can we classify all groups?

o Answer: NO WAY!
@ Question: can we classify finite groups?
e Answer: SORT OF! (EXTREMELY HARD!)
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Can we classify all groups?

Answer: NO WAY!
Question: can we classify finite groups?
Answer: SORT OF! (EXTREMELY HARD!)

Question: can we start with an easier problem, say classifying finite
abelian groups?
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Can we classify all groups?

o Answer: NO WAY!

@ Question: can we classify finite groups?

e Answer: SORT OF! (EXTREMELY HARD!)

@ Question: can we start with an easier problem, say classifying finite
abelian groups?

e Answer: SURE! (FINITE) ABELIAN GROUPS ARE A PIECE OF
CAKE!
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Classification of finite abelian groups

Theorem

Any finite abelian group G is isomorphic to a product of cyclic groups with
orders being powers of primes:

G~Z/pi* x Z/p3* x -+ X L/p}

Such a decomposition is unique if we require n; > 1 and
pL=2p2=>...... Pr-
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Feeling

e Remark: Z/4 #7/2 x 7/2.
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Feeling

e Remark: Z/4 #7/2 x 7/2.

o Feeling: abelian groups are like sand.
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General finite groups

@ Question: what about general groups?
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General finite groups

@ Question: what about general groups?

@ Answer: they are build from simple pieces, which we can actually
classify!

@ Goal: explain what these “simple pieces” are, and what “built” really
means.
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Normal subgroups

Definition

Let G be a group, and H be a subgroup. The subgroup H is called normal
if for any g € G we have gHg™! = H (equality of sets!).
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Normal subgroups

Definition
Let G be a group, and H be a subgroup. The subgroup H is called normal
if for any g € G we have gHg™! = H (equality of sets!).

o If G is abelian, every subgroup is normal.

@ The subgroup of rotations in the group D, of symmetries of a square
is normal.

@ The subgroup A, of even permutations is normal in S,,.
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Normal subgroups

Definition

Let G be a group, and H be a subgroup. The subgroup H is called normal
if for any g € G we have gHg™! = H (equality of sets!).

o If G is abelian, every subgroup is normal.

@ The subgroup of rotations in the group D, of symmetries of a square
is normal.

@ The subgroup A, of even permutations is normal in S,,.

@ Important example: for any homomorphism ¢: G — H , kerp is a

normal subgroup of G.
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Cosets for normal subgroups

The point is: if H is normal, the set of cosets G/H has a natural group
structure. This group is called the quotient group.

@ The multiplication of cosets is given by aH x bH := abH
(well-defined!).
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Cosets for normal subgroups

The point is: if H is normal, the set of cosets G/H has a natural group
structure. This group is called the quotient group.

@ The multiplication of cosets is given by aH x bH := abH
(well-defined!).

e Let nZ C Z be the subgroup {...,—n,0,n,2n,...}. Then
Z/nZ ~7/n.
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Cosets for normal subgroups

The point is: if H is normal, the set of cosets G/H has a natural group
structure. This group is called the quotient group.

@ The multiplication of cosets is given by aH x bH := abH
(well-defined!).

e Let nZ C Z be the subgroup {...,—n,0,n,2n,...}. Then
Z/nZ ~7/n.

@ Point: all normal subgroups of a group G are kernels of all possible
homomorphisms G — H.
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Cosets for normal subgroups

The point is: if H is normal, the set of cosets G/H has a natural group
structure. This group is called the quotient group.

@ The multiplication of cosets is given by aH x bH := abH
(well-defined!).

e Let nZ C Z be the subgroup {...,—n,0,n,2n,...}. Then
Z/nZ ~7/n.

@ Point: all normal subgroups of a group G are kernels of all possible
homomorphisms G — H.

o Key theorem:

Theorem (The First Isomorphism theorem)

For any homomorphism ¢: G — H, there is a natural isomorphism

G/ kerp ~Imy
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Simple groups

Definition

A group G is called simple if it doesn't have non-trivial normal subgroups
(i.e. except G and {e}).

@ For a simple group G, any homomorphism G — H is either trivial, or
injective.
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Simple groups

Definition

A group G is called simple if it doesn't have non-trivial normal subgroups
(i.e. except G and {e}).

@ For a simple group G, any homomorphism G — H is either trivial, or
injective.

o Feeling: a simple group is like a steel ball

S

i

@ Simple groups will be our building blocks.
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Examples of simple groups

e A group Z/n is simple if and only if nis a prime number.
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Examples of simple groups

e A group Z/n is simple if and only if nis a prime number.
@ We will see that there is a good analogy

simple groups < prime numbers
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Examples of simple groups

e A group Z/n is simple if and only if nis a prime number.
@ We will see that there is a good analogy
simple groups < prime numbers

@ Symmetric groups S, are never simple for n > 3, since they contain
normal subgroups Ap.
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Examples of simple groups

A group Z/n is simple if and only if nis a prime number.
@ We will see that there is a good analogy
simple groups < prime numbers

@ Symmetric groups S, are never simple for n > 3, since they contain
normal subgroups Ap.

The groups A, are, however, simple for n > 5 (not trivial to prove!)

o We will see many more examples later.
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Questions about simple groups

@ Questions: what are the orders of simple groups? can any order
appear? can there be several simple groups having the same order?
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Questions about simple groups

@ Questions: what are the orders of simple groups? can any order
appear? can there be several simple groups having the same order?

@ If a group has prime order p, then it's isomorphic to Z/p.
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Questions about simple groups

@ Questions: what are the orders of simple groups? can any order
appear? can there be several simple groups having the same order?

@ If a group has prime order p, then it's isomorphic to Z/p.

@ There are no simple groups of order 56.
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Questions about simple groups

Questions: what are the orders of simple groups? can any order
appear? can there be several simple groups having the same order?

If a group has prime order p, then it's isomorphic to Z/p.

There are no simple groups of order 56.

There is unique simple group of order 168.
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Fano plane and the simple group of order 168

@ Theorem. There is unique (up to isomorphism) simple group of order
168, which is the group of symmetries of the Fano plane:
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Fano plane and the simple group of order 168

@ Theorem. There is unique (up to isomorphism) simple group of order
168, which is the group of symmetries of the Fano plane:

@ We will see how this example fits into a more general family of
examples.
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Crazy fact

@ In fact, for any integer n there can be at most two groups of order n.
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Crazy fact

@ In fact, for any integer n there can be at most two groups of order n.

o For almost all integers n, there is at most one group of order n.
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In fact, for any integer n there can be at most two groups of order n.
For almost all integers n, there is at most one group of order n.

There are two non-isomorphic simple groups of order 20160.

There are two infinite families of groups, O2,+1(q) and S2,(q)
(whatever they are), which have the same order for g odd and n > 2.
And that’s it!
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